An Investigation into Intra-vehicle Sensor Networks

Erik Peterson
12.12.2006 · 9:00am
• Sensor networks
 – ‘motes’ sensing environment and talking to each other through low-power radios

• Goal
 – Construct a wireless sensor network on a car

• Motivation
 – Wireless replacement of ‘wiring harness’
 – Wireless ‘clamp-on’ diagnostics tools
High Level Approach

- Two Experiments
 - Initial ‘Packet Loss’ Test
 - Test packet loss between many points in a car
 - Determine appropriate communication parameters
 - Full-up Build/Test
 - Build ‘final’ system
 - Baseline in a controlled environment
 - Then drive around testing it
Packet Loss Test

• Process
 – Place a pair of motes on the car
 – Send some packets
 – Measure loss
 – Repeat ad nauseum

• Results
 – Generally pretty good!
 – Some loss, but not significant in light of criticality (or lack thereof)
 – Out-of the box single-hop messaging is okay!
Full-up Build (the Plan)

- Process
 - Write mote code
 - Write front-end code
 - Test Run in the lab
 - Hook it all up (3 sensor motes + 1 base station mote) to my car and drive around
Full-up Build (the Reality)

- Process
 - Write mote code
 - Try to program mote and realize that the programming board doesn’t work anymore
 - Freak out
 - Purchase Timeshare on Wei’s programming board
 - Try to program mote and realize that sensorboard driver is incomplete
 - Freak out some more
 - Hack together new sensorboard driver out of spare parts
 - Try to program mote and realize that I am now reading photocell instead of thermistor
 - Call it ‘good enough’
 - Write front-end (Java! Yay!)
 - Test Run in the lab
 - Hook it all up (3 sensor motes + 1 base station mote) and drive around
More Pictures!
Full-up Build Results

• Packet loss worse than desktop baseline, but similar to initial test
 – <10% for a mote tied to the top of the engine

• Average of 6-7 measurements/second is easily attainable
 – >10/s likely with a little more ‘smarts’

• Main Result: 50 minutes of data showing it sensing

Note: Not real data.
Conclusions/What’s Next?

• Conclusions
 – No fundamental barrier against intra-vehicle sensor networks
 – Packet loss could be reduced further, but sufficient for non-mission-critical application

• What’s next?
 – Sensing motes need to be able to be retasked
 – More sensors! Custom Sensors!
 – Better mounting (i.e. less reliance on fishing line)
 – Graduation…?
Lessons Learned

• Sensor Network programming, namely TinyOS/NesC, is harder than it probably should be
 – Though some things are trivial (retransmissions)

• Don’t switch major programming platforms in the middle of a project (duh)
 – Linux to OS X; TinyOS 1.1.x to 2.0; raw RS232 to USB; sanity to madness

• “It’s a hardware problem”
 – Bad programming boards, no driver support, incorrect schematics
This slide intentionally left blank