Outline

• Time complexity
 – Notation
 – Maximum subsequence sum problem
 • 4 algorithms (O(N^3), O(N^2), O(N\log N), O(N))

• Tries

• In class exercise
Notation

Asymptotically less than or equal to O (Big-Oh)
Asymptotically greater than or equal to Ω (Big-Omega)
Asymptotically equal to Θ (Big-Theta)
Review on typical growth rates

- Examples:
 - N^2
 - $\log N$
 - $(\log N)^2$
 - $N \log N$
 - N
 - N^3
 - 2^N
 - C

<table>
<thead>
<tr>
<th>Function</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Constant</td>
</tr>
<tr>
<td>$\log N$</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>$\log^2 N$</td>
<td>Log-squared</td>
</tr>
<tr>
<td>N</td>
<td>Linear</td>
</tr>
<tr>
<td>$N \log N$</td>
<td></td>
</tr>
<tr>
<td>N^3</td>
<td>Cubic</td>
</tr>
<tr>
<td>N^2</td>
<td>Quadratic</td>
</tr>
<tr>
<td>2^N</td>
<td>Exponential</td>
</tr>
</tbody>
</table>
Max Subsequence Problem

- Given a sequence of integers A_1, A_2, \ldots, A_n, find the maximum possible value of a subsequence A_i, \ldots, A_j.
- Numbers can be negative.
- You want a contiguous chunk with largest sum.

- Example: $-2, 11, -4, 13, -5, -2$
- The answer is 20 (subseq. A_2 through A_4).

- We will discuss 4 different algorithms, with time complexities $O(n^3)$, $O(n^2)$, $O(n \log n)$, and $O(n)$.
- With $n = 10^6$, algorithm 1 may take > 10 years; algorithm 4 will take a fraction of a second!
Algorithm 1 for Max Subsequence Sum

- Given \(A_1, \ldots, A_n \), find the maximum value of \(A_i + A_{i+1} + \cdots + A_j \)
- 0 if the max value is negative

```c
int maxSum = 0;
for( int i = 0; i < a.size( ); i++ )
for( int j = i; j < a.size( ); j++ )
{
    int thisSum = 0;
    for( int k = i; k <= j; k++ )
    if( thisSum > maxSum )
        maxSum = thisSum;
}
return maxSum;
```

- Time complexity: \(O(n^3) \)

\[
\sum_{i=0}^{N-1} \sum_{j=i}^{N-1} \sum_{k=i}^{j} 1
\]

\[
= \sum_{i=0}^{N-1} \sum_{j=i}^{N-1} (j-i+1)
= \sum_{i=0}^{N-1} (N - i + 1)(N - i) \frac{2}{2}
= \sum_{i=0}^{N-1} \frac{(N - i + 1)(N - i)}{2}
= \frac{N^3 + 3N^2 + 2N}{6}
\]
Algorithm 2

- Idea: Given sum from i to j-1, we can compute the sum from i to j in constant time.

\[
\sum_{k=i}^{j} A_k = A_j + \sum_{k=i}^{j-1} A_k
\]

- This eliminates one nested loop, and reduces the running time to \(O(n^2)\).

```java
int maxSum = 0;

for( int i = 0; i < a.size( ); i++ )
    int thisSum = 0;
    for( int j = i; j < a.size( ); j++ )
        {
            thisSum += a[ j ];
            if( thisSum > maxSum )
                maxSum = thisSum;
        }

return maxSum;
```
Algorithm 3

- This algorithm uses divide-and-conquer paradigm.
- Suppose we split the input sequence at midpoint.
- The max subsequence is entirely in the left half, entirely in the right half, or it cross the midpoint.

- If it spans the middle, then it includes the max subsequence in the left ending at the center and the max subsequence in the right starting from the center.
Algorithm 3 (cont.)

- Maximum subsequence can be
 - In Left
 - In Right
 - In the middle:
 - Largest sum in L ending with middle element + largest sum in R beginning with middle element

Example:

<table>
<thead>
<tr>
<th>left half</th>
<th>right half</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 -3 5 -2</td>
<td>-1 2 6 -2</td>
</tr>
</tbody>
</table>

Max in left is 6 (A1 through A3); max in right is 8 (A6 through A7). But crossing max is 11 (A1 thru A7)
Algorithm 3 (cont.)

```c
static int MaxSubSum( const int A[], int Left, int Right )
{
    int MaxLeftSum, MaxRightSum;
    int MaxLeftBorderSum, MaxRightBorderSum;
    int LeftBorderSum, RightBorderSum;
    int Center, i;

    if( Left == Right ) /* Base Case */
        if( A[ Left ] > 0 )
            return A[ Left ];
    else
        return 0;

    Center = ( Left + Right ) / 2;
    MaxLeftSum = MaxSubSum( A, Left, Center );
    MaxRightSum = MaxSubSum( A, Center + 1, Right );

    MaxLeftBorderSum = 0; LeftBorderSum = 0
    for( i = Center; i >= Left; i-- )
    {
        LeftBorderSum += A[ i ];
        if( LeftBorderSum > MaxLeftBorderSum )
            MaxLeftBorderSum = LeftBorderSum;
    }

    MaxRightBorderSum = 0; RightBorderSum = 0;
    for( i = Center + 1; i <= Right; i++ )
    {
        RightBorderSum += A[ i ];
        if( RightBorderSum > MaxRightBorderSum )
            MaxRightBorderSum = RightBorderSum;
    }

    return Max3( MaxLeftSum, MaxRightSum,
                 MaxLeftBorderSum + MaxRightBorderSum );
}
```

© Mark Allen Weiss, Data Structures and Algorithm Analysis in C
Let $T(n)$ be the time it takes to solve for a maximum subsequence sum problem of size n.

The divide and conquer is best analyzed through recurrence:

\[
T(1) = 1 \quad //\text{constant time}
\]

\[
T(n) = 2T(n/2) + O(n)
\]

This recurrence solves to $T(n) = O(n \log n)$.
Algorithm 4

```c
int maxSum = 0, thisSum = 0;
for( int j = 0; j < a.size(); j++ ) {
    thisSum += a[ j ];
    if ( thisSum > maxSum )
        maxSum = thisSum;
    else if ( thisSum < 0 )
        thisSum = 0;
}
return maxSum;
```

- Time complexity clearly $O(n)$
- But why does it work?
Intuition

- One observation is that if $a[i]$ is negative, then it cannot possibly be the start of the optimal subsequence, since any subsequence that begins with $a[i]$ would improved by beginning with $a[i+1]$
 - Ex: -2 11 -4 13 -5 -2

- Similarly any negative subsequence cannot possibly be a prefix of the optimal subsequence (same logic)

- If we detect that the subsequence from $a[i]$ to $a[j]$ is negative in the inner loop, we can advance i. The crucial thing is that not only we can advance i to $i+1$, but all the way to $j+1$
Outline

- Time complexity
 - Notation
 - Maximum subsequence sum problem
 - 4 algorithms ($O(N^3)$, $O(N^2)$, $O(N\log N)$, $O(N)$)

- Tries

- In class exercise
Trie

- Prefix tree
 - an ordered tree data structure that is used to store an associative array where the keys are usually strings

- Time to insert, or to delete or to find is almost identical because the code paths followed for each are almost identical

- More space efficient when they contain a large number of short keys, because nodes are shared between keys with common initial subsequences.

- Slower if the data is directly accessed on a hard disk drive or some other secondary storage device
class TrieNode {
private:
 bool StrEnds;
 TrieNode *ptr[TrieMaxElem];
public:
 TrieNode();
 void SetStrEnds(){StrEnds = true;}
 void UnSetStrEnds(){StrEnds = false;}
 bool GetStrEnds(){return StrEnds;}
 void SetPtr(int i, TrieNode *j){ptr[i]=j;}
 TrieNode* GetPtr(int i){return ptr[i];}
};

class Trie {
public:
 Trie();
 void Readlist();
 void Insert(char x[]);
 bool Member(char x[]);
 void Delete(char x[]);
private:
 TrieNode *root;
 bool Delete(char x[], int i,
 TrieNode *current);
 bool CheckTrieNodeEmpty(TrieNode *current);
};
Trie example

\{a, abcc, acc, acce, b, bbcb, bbcc, cb, cbbe, cbe, cbcb, cc, ccb, ccbe\}

Thick nodes: True
Thin Nodes: False
Null Pinters are Blank
Trie Delete

```cpp
bool Trie::Delete(char x[], int i, TrieNode *current){
    if (current != 0)
    {
        if (x[i] == '\0') //if at the end of a string
        {
            current -> UnSetStrEnds();
            if (CheckTrieNodeEmpty(current))
                {delete current; return true;} }
        else {
            if (Delete(x,i+1,current->GetPtr(x[i] - 'a'))) {
                current->SetPtr(x[i] - 'a', 0); //set the entry of current node to Null
                if (i != 0 && CheckTrieNodeEmpty(current)) //not to delete the root
                    {delete current; return true;}}}
        return false;
    }
    return false;
}
```
Outline

- Time complexity
 - Notation
 - Maximum subsequence sum problem
 - 4 algorithms ($O(N^3)$, $O(N^2)$, $O(N \log N)$, $O(N)$)

- Tries

- In class exercise
Reference

• Data structure and algorithm analysis in C++ (3rd)

• Professor Suri’s lecture note
 – http://www.cs.ucsb.edu/~suri/cs130a/cs130a.html

• Professor Qu’s lecture note

• Lara Deek’s slide on TrieNode and Trie